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DeepLabStream enables closed-loop behavioral
experiments using deep learning-based markerless,
real-time posture detection
Jens F. Schweihoff 1, Matvey Loshakov1, Irina Pavlova1, Laura Kück2, Laura A. Ewell2 & Martin K. Schwarz 1✉

In general, animal behavior can be described as the neuronal-driven sequence of reoccurring

postures through time. Most of the available current technologies focus on offline pose

estimation with high spatiotemporal resolution. However, to correlate behavior with neuronal

activity it is often necessary to detect and react online to behavioral expressions. Here we

present DeepLabStream, a versatile closed-loop tool providing real-time pose estimation to

deliver posture dependent stimulations. DeepLabStream has a temporal resolution in the

millisecond range, can utilize different input, as well as output devices and can be tailored to

multiple experimental designs. We employ DeepLabStream to semi-autonomously run a

second-order olfactory conditioning task with freely moving mice and optogenetically label

neuronal ensembles active during specific head directions.
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A major goal in behavioral neuroscience is the correlation
of behavioral expressions with neuronal activity. For best
effectiveness, however, the behavior should be identified

in real-time, allowing for instantaneous feedback, i.e., closed-loop
manipulation based on the current behavioral expression1,2.
Currently, such experimental systems often rely on specialized,
on-purpose setups, including intricate beam brake designs,
treadmills, and virtual reality setups to approximate the move-
ment of the investigated animal in a given environment and then
react accordingly3–11.

Classic manipulations of neuronal activity such as lesions,
transgenic alterations, and pharmacological injections result in
long-lasting, and sometimes chronic changes in the tested ani-
mals, which can make it difficult to interpret behavioral effects. In
recent years, there has been a shift towards techniques that allow
for fast, short-lived manipulation of neuronal activity. Optoge-
netic manipulation, for example, offers high temporal precision,
enabling the manipulation of experience during experimental
tasks that test mechanisms of learning and memory12–14,
perception15,16, and motor control17,18. Such techniques offer a
temporal resolution precise enough that the neuronal manipula-
tion can match the timescale of either behavioral expression or
neuronal computation.

Recent developments in the field of behavioral research have
made offline pose estimation of several species possible using
robust deep learning-based markerless tracking19–21. DeepLabCut
(DLC)19, for example, uses trained deep neural networks to track
the position of user-defined body parts and provides motion
tracking of freely moving animals. Additionally, sophisticated
computational approaches have allowed for disentangling the
complex behavioral expressions of animals into patterns of
reoccurring modules22–26. In vivo single-unit recording27, along

with recent advances in in vivo voltage imaging28 and minia-
turized calcium imaging techniques29–31, facilitate real-time
measurements of neuronal activity in freely moving mice. Toge-
ther, these techniques provide a platform for correlating recorded
neuronal activity and complex behavior.

We here introduce DeepLabStream (DLStream), a multi-
purpose software solution that enables markerless, real-time
tracking, and neuronal manipulation of freely moving animals
during ongoing experiments. Its core capability is the orchestra-
tion of closed-loop experimental protocols that streamline
posture-dependent feedback to several input, as well as output
devices. We modified state-of-the-art pose estimation based on
DLC19 to be able to track the postures of mice in real-time. To
demonstrate the software’s capabilities, we conducted a classic,
multilayered, freely moving conditioning task, as well as a head
direction-dependent optogenetic stimulation experiment using a
neuronal activity-dependent, light-induced labeling system (Cal-
Light)1. Finally, we discuss the versatility of DLStream to adapt to
different experimental conditions and hardware configurations.

Results
DLStream enables closed-loop stimulations directly dependent on
actual expressed behavioral postures. Our solution is fully
autonomous and requires no additional tracking-, trigger- or
timing-devices. All experiments can be conducted without
restriction to the animal’s movement and each experimental
session is run fully autonomously after the first setup. Initially, we
trained DLC-based pose estimation networks offline for each
experimental environment and then integrated them into
DLStream (see “Methods” section). Briefly, frames were taken
from a video camera stream, and analyzed using an integrated
deep neural network, trained using the DLC framework. Next, the

Fig. 1 A visual representation of DLStream. Visual representation of workflow in DLStream. Initially, an experimental protocol is designed using a
sequence of modules (puzzle pieces) and a trained DLC network is integrated into DLStream. Afterward, DLStream provides three different outputs for
every experiment. 1. Experiments can be monitored on a live stream. 2. The experimental protocol is run based on posture detection 3. Recorded video and
experimental data are exported after the experiment is done.
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resulting pose estimation was converted into postures and
transferred to an additional process that supervises the ongoing
experiment and outputs feedback to connected devices (Fig. 1).
As a result, experiments run by DLStream comprise a sequence of
modules (Fig. 2c) depending on the underlying experimental
protocol. Basic modules, such as timers and stimulations, are
posture-independent and control fundamental aspects of the
experiment. Timers keep track of the time passing during frame-
by-frame analysis and act as a gate for posture-based triggers and
stimulations (e.g., inter-stimulus time). Stimulations specify
which devices are triggered and how each device is controlled
once it was triggered (e.g., reward delivery). Posture-based trig-
gers are sets of defined postures (e.g., position, head direction,
etc.) that initialize a predefined cascade (stimulation) once
detected within an experiment (see Fig. 2 for examples). As an
experiment is conducted, DLStream records and subsequently
exports all relevant information, including posture tracking,
experimental status, and response latency in a table-based file.
During any experiment, posture tracking is visualized on a live
video stream directly enabling the monitoring of the conducted
experiment and tracking quality. Additionally, the raw video
camera stream is timestamped and recorded, allowing high-
framerate recording, with lower-framerate closed-loop posture
detection to save processing power (Fig. 1).

Classical second-order conditioning using DLStream. To
comprehensively test DLStream we first designed a semi-
automated classical second-order conditioning task (Fig. 3a–e).
Using DLStream, mice were trained to associate two unknown
odors (rose and vanillin) with two visual stimuli, which were
initially associated with either a reward or an aversive tone
(Fig. 3a). We subsequently tested the conditioned mice in an
odor preference task. In the first conditioning stage, DLStream
triggered trials when a mouse was facing the screen. For this, a
trigger module was designed that utilizes the general head
direction of mice, activating stimulation modules only when

mice were looking towards the screen in a 180° window. The
mice were conditioned to associate two unknown visual stimuli
(a high-contrast black and white image) with a reward or an
aversive tone (Fig. 3a) using combinations of predefined sti-
mulation modules. In the positive trial, DLStream delivered a
liquid reward by triggering the corresponding stimulation
module in a fixed reward location and withdrew it if it was not
collected within a preset time period monitored with a timer
module. In the negative trial, DLStream delivered only the
aversive tone (Fig. 3a). All mice (n= 10) were trained for
13 days and selected based on their individual performance to
reach the success criterion (85% reward collection within one
session, n= 6 mice). We limited the number of sessions to 1 h or
40 trials per day within our experimental protocol. Note that no
mouse needed more than 45 min to complete a session. During
the subsequent second-order conditioning, the mice were pre-
sented with two novel odors (rose and vanillin), placed in a petri
dish in front of the screen (Fig. 3b). Visual stimuli were pre-
viously paired with an odor and pairing was kept throughout all
experiments. Upon exploration of one of the two presented
odors, DLStream showed the mice the paired, previously con-
ditioned visual stimulus (Fig. 3b). The session was completed
when DLStream detected that the mice had explored both odors
at least 10 times, or after 10 min had passed. Second-order
conditioning was then conducted in two stages. The first stage
consisted of the mouse being in direct contact with the odor
location (petri dish), while the second was dependent on the
proximity of the mouse to one of the locations and its head
direction (Fig. 3b). For this, trigger modules designed to detect
proximity and the heading direction of mice were used. Each
stage was repeated twice with exchanged odor locations.

We then tested for successful second-order conditioning by
conducting an offline odor preference task (Fig. 3c). Mice (n= 6)
were placed in an open field arena with one odor in each of the
quarters. In addition to the two conditioned odors, two novel
odors (acetophenone and valeric acid) were presented. Mice were
given 10 min twice to explore and total investigation time was

Fig. 2 Experimental design using DLStream. a, b Schematic design of an experimental protocol with a posture-based trigger. Manipulation can be turned
“Conditional OFF” (a) and “Conditional ON” (b) based on the mouse’s behavior. The combination of several modules allows building a sophisticated
experimental protocol. For example, the timer module can be utilized to design inter-trial and -stimulus timers (b), minimum stimulation (b), or delayed
triggers (e). c Description of available modules in a and b. d Application of the above-described design in an optogenetic experiment. The stimulation is
triggered dependent on head direction angle (orange arrow, α) to a reference point (red line) within the target window (blue arc). e Application of the
above-described design in a classical conditioning task. The mouse is shown an image when looking at the screen (left) and the reward is removed if it does
not move into the reward location within a predefined timeframe (right, green zone). The mouse’s posture is shown with orange dots.
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measured by taking the circular odor location into account. Mice
showed a preference towards the positively conditioned (S+)
odor compared to the negatively conditioned (S−) odor by
spending significantly more time at the S+ odor location than in
the S− odor location (Fig. 3d). While the investigation time of the
S− odor was significantly less compared to the investigation time

of both novel odors, we found no significant difference between
the S+ odor and the novel odors.

Optogenetic, head direction-dependent labeling of neurons
using DLStream. As a second example of DLStream’s

Fig. 3 Closed-loop conditioning task. a Conditioning. When a trial is triggered by the mouse facing the screen (green triangle and ring), the mouse is
shown a visual stimulus (yellow lightning bolt). Mice not facing the screen do not receive the stimulus (red x). In the positive trial (green lightning bolt,
green line), a reward is delivered (blue drop, arrow down) and withdrawn (blue drop, arrow up) if not collected within a preset time period. In the negative
trial (blue lightning bolt, blue line) only a loud tone (red polygon) is delivered. b 2nd Order conditioning. Upon exploration of either odor location (colored
black circle) the mouse is shown one of the previously conditioned visual stimuli on the screen (yellow lightning bolt). Conditioning was conducted in two
stages. The first stage (Stage 1) consisted of direct contact with the odor location, while the second (Stage 2) was dependent on the proximity of the
mouse to one of the locations (black arrow) and the mouse facing towards it. c Odor preference task. The mouse was set in an open field arena with one
odor in each of the quarters (colored circles). The total investigation time of each odor source was measured. d Investigation time during odor preference
task in odor location: ROIs encircling the odor location. The bar graph shows the STD and individual data points. p < 0.05 (*) one-tailed paired t-test; R/V
p= 0.0395, R/VA p= 0.0497, R/A p= 0.0311; n= 11 trials (2 trials per mouse, 1 trial excluded, 6 mice total; see also Supplementary Data 1). Error bars
represent standard deviation. V=Vanillin (S+), R= Rose (S−), VA=Valeric acid, A=Acetophenone.
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applicability, we tested the possibility to optogenetically label
active neurons in the anterior dorsal nucleus of the thalamus
(ADN) dependent on the mouse’s head direction using the
neuronal activity-dependent labeling system Cal-Light1. Activity
within ADN neurons is known to be modulated by the angle of
head direction27. Within a stable environment, the angular tuning
curve of an ADN neuron remains constant, facilitating experi-
mental designs that span several days32. To label ADN ensembles,
we utilized DLStream to deliver light stimuli within precisely
defined head direction angles (target window) (Fig. 4). The timing
was controlled by designated timer modules controlling the onset
and offset of light stimulation once the stimulation module was
triggered. Mice were placed in a circular white arena with a single
black cue at one side and allowed to investigate the arena in one
30-min session per day for four consecutive days. During each
session, mice were stimulated via a chronically implanted optical
fiber with blue light (488 nm) triggered by their head direction
angle. Mice were able to freely move their heads in all directions,

but stimulation was limited to periods when they oriented their
head to the designated head direction target window (60° to
reference point, Fig. 4b, c and Supplementary Fig. 4). Each sti-
mulation lasted 1–5 s depending on the time spent orienting to
the target window (60°) with a minimum inter-stimulus time of
15 s. In the case of the inter-stimulus timer, the module blocked
the link between the trigger module and the stimulation module
when activated, disabling posture-dependent stimulation for its
designated duration.

The resulting average light stimulation per session (48 ± 10 s)
occurred selectively in the target angle window across all
experimental animals (Fig. 4h). Note that stimulation with
outside-target head direction angles can result from individual
stimulations having a chosen minimum duration of 1 s, in which
the mouse theoretically could sweep its head away from the target
window. The average total stimulation time across all four
sessions was 357 ± 53 s (n= 10 mice). As a control, a yoked group
of mice was run such that each mouse regardless of its actual head
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direction, received the exact same temporal stimulus as a paired
experimental mouse. Therefore, in the yoked group, light stimuli
were decoupled from head direction (Supplementary Fig. 1a).

Mice explored the entire arena during the task and the
resulting light stimulation was not dependent on the animal’s
position in the arena, as animals could angle their head in the
target orientation from any position within the arena (Fig. 4e, f).
Randomly sampling angles equal to the number of stimulated
angles, revealed a nonspecific distribution of angles—i.e., mice
oriented in all directions (Fig. 4d, left). Note that for each
individual mouse, the mean resultant length for stimulated angles
was significantly larger than would be expected by random
sampling (see “Methods” section, n= 1000 samples, p < 0.01)
(Fig. 4d, right).

Next, we quantified the percentage of ADN neurons that were
labeled in three different groups (experimental, no light, and
yoked). Only mice that matched selection criteria (correct fiber
ferrule placement as well as injection placement) were taken into
account when quantifying Cal-Light conversion (see “Methods”
section and Supplementary Fig. 2 for details). Cal-Light infected
neurons showed a 46% conversion within the ADN (Fig. 4j, n= 2
mice) while mice receiving no light stimulation but underwent
the same sessions had no light-induced labeling present
(Fig. 4g–j). Furthermore, within the yoked group, only a very
low percentage (~4%, n= 2 mice) labeling was observed
(Supplementary Fig. 1b, c), indicating that the repeated pairing
between light stimulation and head direction triggered activity
was essential for Cal-Light-mediated fluorescent labeling.

Computational performance of DLStream. A reality of any
closed-loop system is that there are temporal delays between real-
time detection of particular postures and stimulus output. To
address this challenge, we first rigorously defined the variance of
behavioral parameters we are measuring. To estimate the spa-
tiotemporal resolution of postures that can be detected using our
integrated network configuration, we compared the pose esti-
mation error of our networks and the correlated parameter
changes between frames. Note that, due to the inherent individual
network performances, DLStream’s effective accuracy in posture
detection is heavily influenced by the previous training of utilized
networks. Nevertheless, if performance is not sufficient for the
executed experiment, DLC networks can always be retrained

using the DLC provided tools. In our hands, the trained network
used during optogenetic experiments resulted in an estimated
average pose estimation error of 4 ± 12 pixels (px) for the neck
point, 3.3 ± 4.4 px for the nose, and 3.3 ± 2.0 px for tail root (n=
597 images) when compared to a human annotator labeling the
same data set (mice without tail were ~60 px long in our 848 ×
480 px recordings). Body part estimation resulted in an average
head direction variance of 3.6 ± 9.6° (tested in 80 sessions for
1000 frames per session) between consecutive frames with an
estimated average error of 7.7 ± 15.1° compared to human
annotation (n= 597, ground truth) per frame. The frame-by-
frame variance is a product of performance errors and the
inhomogeneous movement of the animal during experiments
while the difference between network pose estimation and human
annotation is most likely a result of inaccurate tracking which can
be reduced by additional training and/or bigger training sets.
Note that depending on the mixture of episodes of fast move-
ments and slow movements during sessions, the variance might
change. We next manually evaluated posture detection accuracy
during optogenetic experiments and found a false-positive rate of
11.8%. In the evaluated sessions most, false-positive events were
anomalies in mouse behavior such as spontaneous jumping, that
can possibly be further reduced by additional network training if
necessary. Additionally, we estimated the general false-positive/
false-negative rate for our head direction trigger based on a
human-labeled data set and found a false negative rate of 11.1 ±
4.1%, while false-positive rates were 11.6 ± 4.8% (n= 597; see
Supplementary Fig. 3 for additional data).

During optogenetic experiments (n= 80), DLStream reached
an average performance time of 33.32 ± 0.19 ms per frame,
matching the average camera framerate of 30 Hz (33.33 ms),
including posture detection and computation of the resulting
experimental protocols until output generation. We also mea-
sured the hardware latency to estimate the time between posture
detection and triggered stimulation during optogenetic sessions
from three different mice (n= 164 stimulation events). Here, the
resulting light stimulation occurred within 5 frames (4.8 ± 1.1
frames at 30 fps; ≈150 ms). It is important to consider here that
the total latency critically depends on the individual setups and
the intrinsic parameters of connected components. To evaluate
the limits of DLStream, we tested different hardware configura-
tions and investigated performance levels and response time.

Fig. 4 Optogenetic labeling of head direction-dependent neuronal activity. a Left: Stereotactic delivery of Cal-Light viruses into the ADN and fiber ferrule
placement. Middle: Infected neurons (red) are stimulated with blue light (488 nm) controlled by DLStream. Right: Infected neurons are only labeled
(yellow) when they are active (black arrow) during light stimulation (middle). b Schematic drawing of the circular arena with the visual cue (thick black arc)
and the target window (thick blue arc) around the reference point (red circle). DLStream triggered stimulation is strictly dependent on the correct head
direction (blue arc). c Left: Representative example (see also Supplementary Data 2) radial histogram of all head directions during stimulation (red) within
one session (normalized to the maximum value). The mean resultant vector length is indicated by r. Right: Radial histogram of all head directions during the
whole session (gray) and during stimulation (red) (normalized to the maximum value of the entire session). Rings represent quantiles in 20% steps. d Left:
Representative random sample of the whole session simulating stimulation without DLStream control at random time points during the session
(normalized to the maximum value). The mean resultant vector length is indicated by r. For each session, random distributions were calculated 1000 times.
Right: For one session, the distribution of mean resultant vector lengths generated by random sampling (n= 1000). The red line denotes the actual mean
resultant vector length during stimulation in the session. The dotted black line represents the p < 0.01 cutoff. e Representative example of the mouse’s
position (gray) over time during the first 5 min of the session in c. The stimulation events are shown in blue. f Heatmaps representing the relative
occupancy of the mouse within the arena during the whole session (top) and stimulation (bottom) in c. Cue and target window are shown in their relative
position. g Example of Cal-Light expression in an experimental mouse. Left: tdTomato expression (red) indicating expression of Cal-Light viruses with
nucleus staining (DAPI, blue). Right: Activity-dependent and light-induced eGFP expression (green). The white box represents the zoomed-in region in h.
The bar represents 200 µm. h Close up from g vs. a similar region in an animal that was not stimulated with light (no light). Left: tdTomato expression
(red). Right: Activity dependent and light-induced eGFP expression (green). The bar represents 50 µm. Note that control mice show no eGFP expression. i
Average light stimulation during each session (40 total) corresponding to head direction (60° bins) with target window (blue) indicating the DLStream
triggered stimulation onset (see also Supplementary Data 3). Paired student’s t-test: p < 0.001. n= 10 mice. Error bars represent standard deviation. j Ratio
between infected neurons (tdTom+) and activity-dependent labeled neurons (eGFP+/tdTom+) in mice matching selection criteria (see “Methods”
section). n= 2 mice.
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First, average performance was measured during 10,000 frames in
two different configurations with two different camera settings
(30 fps and 60 fps with 848 × 480 px resolution) using the same
camera used in our experiments. With the standard 30 fps camera
setting, the advanced configuration (Intel Core i7-9700K @ 3.60
GHz, 64 GB DDR4 RAM, and NVidia GeForce RTX 2080 Ti
(12GB) GPU) achieved reliable 30 fps (33.33 ms per frame) real-
time tracking with 30 ± 7 ms, while the other system (Intel Core
i7-7700K CPU @ 4.20 GHz, 32GB DDR4 RAM and NVidia
GeForce GTX 1050 (2GB) GPU) only reached an average analysis
time of 91 ± 10 ms. Using a higher framerate input from the
camera (60 fps; 16.66 ms per frame), the overall performance did
not change considerably (24 ± 9 and 90 ± 9 ms, respectively).
Second, we tested a different camera (Basler acA1300 – 200 μm),
which lacks the depth capabilities of the Intel RealSense camera
but comes with increased framerate, on the advanced configura-
tion with different image resolutions (ranging from 1280 × 1014
to 320 × 256 px) to benchmark DLStream’s upper-performance
limits with more standardized cameras and resolutions. While we
initially used DLC trained ResNet5033,34 networks during
experiments, we additionally evaluated the capabilities of the
other available models (ResNet10133,34, MobileNetv235) and also
a higher number of body parts (3, 9, and 13 body parts). In our
hands, DLStream’s latency reached a maximum of 130 ± 6 Hz (ca.
8 ms) with the MobileNetv2 architecture at 320 × 256 px
resolution, while the ResNet50 network reached its upper limit at
94 ± 6 fps (ca. 10 ms) at the same resolution (see Supplementary
Table 1 for more details).

Discussion
There has been a recent revolution in markerless pose estimation
using deep neural networks. However, these system’s intrinsic
design delays analysis until after the end of the experiment owing
to their heavy computation. Here we take advantage of the power
of DLC’s offline body part tracking to train a neural network and
integrate it into our real-time, closed-loop solution.

As observers, experimenters often record and interpret an
animal’s behavior by taking its movement as an approximation of
the underlying intention or state of mind. Building on this gen-
eralization, behavior can be defined, categorized, and even
sequenced by examining estimations of the animal’s
movement23,24,36,37. Classified periods of behavior, so-called
behavior modules, are commonly used for offline quantification
(e.g., phenotyping). In addition, behavior modules are also very
promising in closed-loop approaches to react specifically to
complex behavior. Such an analysis yields the prospect of pre-
dicting behavior, for example by matching initial elements of a
uniquely arranged behavioral sequence. With DLStream, a com-
bination of triggers based on the animal’s posture or a sequence
of postures can be integrated into experimental designs. Example
triggers include center-of-mass position, direction, and speed of
an animal, although multiple individual tracking points can also
be utilized, such as the position and trajectory of multiple, user-
defined body parts. This allows the design of advanced triggers
that include head direction, kinematic parameters, and even
specific behavior motifs (e.g., rearing, grooming, or sniffing). Out
of the box, DLStream supports triggers based on single-frame as
well as sequential postural information, although complex beha-
vior modules could also be utilized once behavior based on col-
lected posture data has been classified, modeled, and integrated as
custom trigger modules into DLStream. The challenge in
manually designing triggers for relevant behavior is similar to the
challenges faced in offline analysis, where it has already been done
for a variety of relevant read-outs, such as described in VAME25,
B-SOID26, and SIMBA38. While this is relatively simple when

only single-frame posture detection with low-level features are
utilized (e.g., head direction angle), defining sequential changes of
features to capture more complex changes in the animal’s
movement requires the careful exploration and extraction of
relevant features. Once feature extraction is established, however,
the behavior of interest can be detected and implemented as a
custom trigger into DLStream. Promising approaches for
machine-guided classification are being actively developed using
DLC-based pose estimation as input25,26,38, which should
increase the range of available triggers considerably. The inte-
gration of fast behavior classifiers, for example, would enable the
design of a trigger that reacts to complex behaviors without the
need for a strict, manual description of relevant feature changes.
To facilitate the design of custom experiments and triggers, we
offer several tutorials and guides with our DLStream code
(https://github.com/SchwarzNeuroconLab/DeepLabStream).
Additionally, easy-to-use, GUI-based toolkits such as SimBA38

facilitate the generation and open-source distribution of robust
classification models.

Two of the most considerable limitations in all real-time
applications are the latency of the system to react to a given input
and the rate at which meaningful data are obtained. While the
latency is dependent on the computational complexity, the rate is
dependent on several factors, and hardware constraints in parti-
cular. A researcher might only need the broadest movements or
behavioral states to understand an animal’s basic behavior, or
fast, accurate posture sequences to classify behavioral modules on
a sub-second scale24,36. Considering that animals behave in a
highly complex manner, a freely moving approach is favorable
since restricting movement likely reduces the read-out of the
observable behavioral spectrum.

DLStream is designed as a universal solution for freely moving
applications and can, therefore, be used to investigate a wide
range of organisms. DLC networks already have the innate cap-
ability to track a variety of animals across different species39

which can be directly translated to experiments within DLStream.
Additionally, its architecture was designed for short to mid-length
experiments (minutes to hours). There are no built-in limitations
to conduct long-lasting experiments (days to weeks), but
DLStream currently lacks the capability to automatically process
the large amounts of raw video data or other utilities that become
necessary when recording for longer periods of time. One possible
solution would be to remove the raw video output and only save
the experimental data that includes posture information, which
would considerably lighten the necessary data storage space.

With regards to latency, the current fully tested, closed-loop
timescale enables the tracking and manipulation of a wide range
of activities a rodent might perform during a task. Very fast
movements, however, like whisker movement40,41 and pupil
contraction42,43 might not be fully detected using the 30 Hz
configuration from our experiments, but might be possible using
lower camera resolution and a different network architecture
(e.g., MobileNetv2; Supplementary Table 1). Most freely moving
applications usually lack the resolution to visualize whiskers and
pupils while maintaining an overview of the animal’s movement
in a large arena. Note that offline analysis of raw, higher frame-
rate videos can still be recorded if desired. DLStream is able to
take frames from a higher framerate stream but still maintain a
lower, loss-less closed-loop processing rate. On a side note,
developments in alternative, non-video-based, specialized track-
ing (e.g., eye-tracking44) might lead to a solution for researchers
interested in capturing truly holistic behavioral data.

Using posture-dependent conditioning, mice were able to
successfully learn an association between a visual stimulus and a
reward, thus demonstrating DLStream’s capabilities with respect
to the automatization of classical learning tasks. Second-order
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conditioning resulted in an odor preference between the condi-
tioned odors. Importantly, mice did not need any previous
training apart from initial habituation to the reward delivery
system to perform this task. Interestingly, mice investigated the
novel odors at the same level as the positively reinforced odor,
suggesting a novelty component that influences the animal’s
investigative behavior. It is likely that previous habituation to the
neutral odors would reduce that effect. Importantly, possible
applications are not limited to classical conditioning tasks. Many
behavioral tasks, an operant conditioning task, for example, could
also be accomplished by setting a specific posture or sequence of
postures as a trigger to reward, punish or manipulate freely
behaving animals during an experimental session.

To dissect and better understand the neuronal correlates of
complex behaviors a better understanding of the actively par-
ticipating neuronal assembles is desirable. Techniques that can
bridge connectomics, electrophysiology, and ethology hold the
potential to reveal how computations are realized in the brain
and subsequently implemented to form behavioral outcomes.
For instance, by utilizing neuronal activity-dependent labeling
systems such as Cal-Light1, Flare2, or CaMPARI45, it is already
possible to visualize active neurons during episodes of behaviors
of interest. However, the identification of repetitive/reoccurring
episodes and following activation of a specific trigger is currently
restricted by a lack of dynamic closed-loop systems. With
DLStream, we show that the real-time detection of specific
behaviors in freely moving mice can be combined with neuronal
activity-dependent labeling systems (Cal-Light) to investigate
the neuronal correlates of behavior. We here delivered light
stimuli to the ADN to label neural ensembles active during
specific head directions. Within the selected experimental ani-
mals, labeling of active neurons was successful and resulted in
the labeling of a subset of cells (ca. 46%). Our goal was to
demonstrate that DLStream can potentially label such specific
ensembles of active neurons during relevant behavioral expres-
sions. Direct optogenetic activation and inhibition46–49 of neu-
ronal population based on posture detection might also be
possible with DLStream, although our stimulation setup had
delays of ~150 ms between detection and manipulation, which
may be too slow for certain applications. In our hands, delays
were still short enough to allow for targeting activity triggered
calcium dynamics by the Cal-Light system1,50. Using a solution
like DLStream the range of detectable behaviors would increase
substantially and applications for action- and posture-
dependent labeling and subsequent manipulation of different
freely moving species are wide-ranging. Additionally, optimiz-
ing the setup might allow faster feedback times as our hardware
limited the effective use of the underlying software performance
of DLStream.

Comparative tests between our available computer configura-
tions suggest that the GPU power is responsible for major per-
formance gains in real-time tracking utilizing DLStream. CPU
power is also important since several parallel processes need to be
maintained during complex experimental protocols and proces-
sing of pose estimation. DLStream is able to analyze new frames
as soon as the current frame is fully processed, therefore a higher
framerate does not slow down DLStream but rather enables it to
work at the upper-speed limit (Supplementary Table 1). At this
stage, the full utilization of higher framerates will heavily depend
on the hardware configuration and the experimenter’s resolution
requirements. From a pure performance perspective, the use of
faster neural network architectures (e.g., MobilNetV235) trained
within the DLC framework already increases the available fra-
merate by a factor of four (30–130 fps, Supplementary Table 1),
which is in line with the recent big-scale benchmark tests run by
DLC51,52 and other publications11.

DLStream is compatible with old and new versions of DLC.
Although originally developed for DLC 1.11 (Nature Neuroscience
Version19), we have successfully tested the newest DLC version
(DLC 2.x19) without encountering problems. Networks trained on
either version can be fully integrated into DLStream and used as
needed. Additionally, DLStream is in principle able to support
positional information from other pose estimation networks20,21

but would currently require some customization by the user as these
networks have different input/output formats that would need to be
adapted to the current workflow. An experimental implementation
of additional pose estimation sources can be found on our GitHub
page (https://github.com/SchwarzNeuroconLab/DeepLabStream).
This includes the implementation of models exported by DeepPo-
seKit21 (LEAP20, StackedHourglass53, StackedDenseNet21, DLC)
and DLC-Live51 (DLC) as well as multiple animal DLC (maDLC).
However, the performance speed of such network implementations
needs to be evaluated and compared to established pose estimation
speed. Recent developments by DLC regarding online pose esti-
mation reported real-time network performances for architectures
used by DLC51.

With the recent advances in markerless, multiple animal
tracking (e.g., maDeepLabCut, SLEAP20,54, id-tracker55) an
adaptation of DLStream to include multiple animal-based triggers
would further enhance its versatility. In theory, such an adapta-
tion should be similar to using multiple body parts. The challenge
will most likely be the precise definition of social triggers and the
design of relevant experiments using closed-loop stimulation. We
briefly tested closed-loop multiple animal tracking using a pair of
differently colored mice (standard DLC), as well as a maDLC-
trained network on mice with same-colored fur, and were able to
confirm that DLStream can utilize the similar output pose esti-
mation of both. However, full verification of implementation
within an experiment is yet to be done.

Notably, DLStream could also be upgraded to use 3D posture
detection as for example implemented recently by EthoLoop10.
To achieve this, two reasonable approaches exist that allow 3D
tracking of animals based on video analysis. A DLC native
approach would be the use of multiple camera angles to trian-
gulate the animal’s position (see ref. 39 for further information).
An alternative approach would be the use of depth cameras to
estimate the distance of an animal to the camera and thereby
generate a 3D representation.

DLStream is a highly versatile, closed-loop software solution for
freely moving animals. While we show its applicability in posture-
dependent learning tasks and optogenetic stimulation using mice,
we see no obvious limitations to the applicability of DLStream on
different organisms and other experimental paradigms.

Methods
Mice. C57BL/6 mice were purchased from Charles River (Sulzfeld, Germany) and
maintained on a 12-h light/12-h dark cycle with food and water always available.
All the experiments were carried out in accordance with the German animal
protection law (TierSCHG), FELASA, and were approved by the animal welfare
committee of the University of Bonn.

AAV production. AAV pseudo-typed vectors (virions containing a 1:1 ratio of
AAV1 and AAV2 capsid proteins with AAV2 ITRs) were generated as described57,58.
Briefly, human embryonic kidney 293 (HEK293) cells were transfected with the AAV
cis plasmid, and the helper plasmids by standard calcium phosphate transfection.
Forty-eight hours after transfection the cells were harvested and the virus purified
using heparin affinity columns (Sigma, St. Louis, MO)59. Purification and integrity of
the viral capsid proteins (VP1-3) were monitored on a Coomassie-stained SDS/
protein gel. The genomic titers were determined using the ABI 7700 real-time PCR
cycler (Applied Biosystems) with primers designed to WPRE.

Surgical procedure. Viral injections were performed under aseptic conditions in 2-
months-old C57BL/6 mice. Mice were initially anesthetized with an oxygen/isoflurane
mixture (2–2.5% in 95% O2), fixed on the stereotactic frame, and kept under a
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constant stream of isoflurane (1.5–2% in 95% O2) to maintain anesthesia. Analgesia
(0.05mg/kg of buprenorphine; Buprenovet, Bayer, Germany) was administered
intraperitoneal prior to the surgery, and Xylocaine (AstraZeneca, Germany) was used
for local anesthesia. Stereotactic injections and implantations of light fiber ferrules
were performed using a stereotactic frame (WPI Benchmark/Kopf) and a
microprocessor-controlled minipump (World Precision Instruments, Sarasota, Flor-
ida). The viral solution (1:1:2; AAV-TRE-EGFP, Addgene #89875; AAV-M13-TEV-
C-P2A-TdTomato, Addgene #92391; AAV-TM-CaM-NES-TEV-N-AsLOV2-TEV-
seq-tTA, Addgene plasmid #92392) was injected unilaterally into the ADN. Viruses
were produced as previously described. To reduce swelling animals were given
Dexamethasone (0.2mg/kg). For implantation, the skin on the top of the scalp was
removed and the skull cleared of soft tissue. Light fiber ferrules were implanted and
fixed using a socket of dental cement. Loose skin around the socket was fixed to the
socket using tissue glue (3M Vetbond). Directly after the surgery animals were
administered 1ml 5% Glucosteril solution. To prevent the wound pain, analgesia was
administered on the three following days. Animals were left to rest for at least 1 week
before starting handling. Experiments were conducted 3 weeks after surgery.

Perfusion. Mice were anesthetized with a mixture of Xylazine (10 mg/kg; Bayer
Vital, Germany) and ketamine (100 mg/kg; Bela-pharm GmbH & Co. KG, Ger-
many). Using a peristaltic pump (Laborschlauchpumpe PLP33, Mercateo, Ger-
many), the mice were transcardially perfused with 1× PBS followed by 4%
paraformaldehyde (PFA) in PBS. Brains were removed from the skull and post-
fixed in 4% PFA overnight (ON) at +4 °C. After fixation, the brains were moved
into PBS containing 0.01% sodium azide and stored at +4 °C until sectioning.
Fixed brains were sectioned coronally (70 or 100 μm) using a vibratome (Leica
VT1000 S) and stored in PBS containing 0.01% sodium azide at +4 °C.

Conditioning task. Mice were placed in an open field arena (70 × 70 cm). Each
session lasted 1 h or a maximum number of 40 trials. A session consisted of a
random sequence of trials. Additionally, if an animal successfully finished 20
positive trials, the session was ended. A trial was initiated when the animal was
facing the screen. Each trial lasted 20 s with an inter-trial interval of 30 s. At the
beginning of each trial, a visual stimulus was shown on the screen for 10 s. In the
positive trial, a reward was delivered at the end of the visual stimulus and with-
drawn if not collected within 7 s. In the negative trial, a loud tone (100 dB) was
delivered and no reward was given. After at least five sessions, animals that learned
the association successfully (>85% success rate in the positive trial) were trans-
ferred to the next stage. We did not evaluate the success rate of negative trials since
the aversive stimulation was delivered regardless of the animal’s behavior.

The visual stimulus was a high-contrast, black, and white image of an X or +
spanning the whole screen. The screen was the same size as the arena wall it was
placed at.

Second-order conditioning task. Animals were placed in the open-field arena.
Two Petri dishes filled with fresh bedding were placed on the wall facing the screen.
Two odorants (10 µl on filter paper) were placed in one of the Petri dishes each. A
pair of an odorant and visual stimulus (negative or positive) was chosen and kept
throughout the experiments. Upon exploration of an odor location, the animal was
shown the corresponding visual stimulus. The session was completed after the
animal explored both odors for at least 10 individual times or after 10 min. Con-
ditioning was conducted in two stages. Both stages were repeated with switched
odor positions, resulting in a total of four repetitions per animal. The first stage
consisted of direct contact with the odor location, while the second was dependent
only on the proximity of the animal to a location and the animal facing towards it.

Preference task. The mouse was placed in a different open-field arena (70 × 40
cm) with one odor in each of the quarters. In addition to the conditioned odors,
two neutral odors were presented. The mouse was given 10 min twice to explore
the arena with an inter-trial time of 10 min in between. Total investigation time
was measured with circular ROIs, corresponding to the odor location, above each
petri dish. Trials in which the mice did not investigate any odor source were
excluded (1 trial out of 12; n= 6 mice).

Head direction-dependent optogenetic stimulation. Mice were put in a
cylindrical white arena with a single cue (a black vertical bar). The arena was
enclosed by a black curtain. A random point was chosen to act as a reference for
head direction (0°). The reference point was kept constant between experimental
sessions and animals but was not visible to the animal. To habituate the animal to
the arena, the animal was put into the arena for 30 min for 2 days and reward
pellets were placed randomly inside the arena at the 0, 10, and 20 min mark.

Experimental group: During the experiment, light stimulation (488 nm, 15 mW;
Laser OBIS LX/LS, controlled by OBIS LX/LS Single Laser Remote, Coherent Inc.,
Santa Clara, CA, USA) was initiated whenever the animal’s head direction was
within a 60° window around the reference point. Stimulation lasted 1 s or as long as
the head direction was maintained in the window up to a maximum of 5 s. After
each stimulation, further stimulation was discontinued for at least 15 s to avoid
overheating of brain tissue and in line with the originally published Cal-Light
experiments1. The animal was allowed to investigate the arena over four

consecutive days for 30 min sessions each day during which the animal was
stimulated. Animals were perfused 1 day after the last session.

Yoked group: In the yoked control group animals were previously paired with
another animal from the experimental group. Each control animal received the
exact same temporal stimulus as the paired experimental animal, decoupled from
its own head direction. Animals were treated and ran the experiment in the same
way as the experimental group in all other aspects.

No light group: In the no-light control group, animals ran the experiment as all
other groups but received no light stimulation.

Head direction analysis. The analysis was performed using custom python scripts.
To determine whether light stimulation precisely targeted to a particular window of
angles, we calculated the mean resultant vector length for the distribution of stimu-
lated angles, which measures the concentration of angles in a distribution. Lengths
vary between 0 (the underlying distribution is uniform) to 1 (all angles in the
underlying distribution are exactly the same). Thus, for stimulated angles, we expect
non-zero lengths close to 1. It is possible that the distribution of stimulated angles
could be determined simply by a bias in the animals’ behavior (i.e., the animal by
chance always faces the direction we have chosen as the target window). To test
against this possibility, we generated null distributions by randomly sampling angles
from the full distribution of angles explored by the animal. The number of samples
was set to equal the number of stimulation angles. Angles were randomly sampled in
this way 1000 times, and each time a mean resultant vector length was calculated. The
null distribution comprised the 1000 means (note that null distributions were cen-
tered near 0). For each session, the resultant mean vector length was well above a 99%
cutoff of the null distribution, indicating that our stimulation angle precision was a
result of accurate posture detection rather than a bias in animal behavior.

Imaging of brain sections. Brain sections were DAPI labeled (0.2 µg/ml) and
overview images were acquired using a widefield microscope (Zeiss AxioScan.Z1).
Based on the overall expression and fiber placement, selected sections were addi-
tionally imaged with a spinning disk microscope (VisiScope CSU-W1). Acquired z-
stacks were used for quantification using FIJI60. Selection criteria for the quantifica-
tion of Cal-Light labeling included the correct placement of the fiber ferrule above the
target region as well as an injection (Supplementary Fig. 2). Mice that did not match
the criteria were only included in the evaluation and quantification of DLStream
performance.

Experimental setup. The corresponding arenas were placed in a closable com-
partment with isolation from external light sources. A light source was placed next to
the setup so that the arena was evenly lit. The camera was placed directly above the
arena. During experiments, the compartment was closed to minimize any disrupting
influences from outside. All devices were triggered using NI 6341 data-acquisition
board (National Instruments Germany GmbH, Munich) in combination with the
Python nidaqxm library connected via USB 3.0 to a PC (Intel Core i7-9700K @ 3.60
GHz, 64 GB DDR4 RAM, and NVidia GeForce RTX 2080 Ti(12GB) GPU). For all
experiments, we used the Intel Realsense Depth Camera D435 (Intel Corp., Santa
Clara, CA, USA) at 848 × 480 and 30Hz to enable reliable streaming at all times.
Although the webcam is capable of 60Hz and higher resolution, we found that these
settings gave reliable framerate and the optional addition of depth data.

We have successfully installed and tested DLStream on Windows 10 and
Ubuntu 18.04.05 OS. DLStream was developed in the open-source programming
language Python. Python includes open-source libraries for most available devices
or desired functions, which allows DLStream to utilize and control a wide range of
devices. Virtually any webcam/camera can be used with any framerate and
resolution considering hardware requirements and limitations.

Hardware latency and detection accuracy during optogenetic stimulation. The
latency between posture detection and optogenetic stimulation was estimated by
manually annotating videos of sessions from three different mice. For this, the
recorded video was analyzed frame-by-frame and the frames between the event
start (posture detection leading to stimulation) taken from the table-based output
file and the visible onset of the laser in the video was counted. To evaluate the false-
positive detection rate during experiments, we manually annotated all stimulation
events during the above sessions. A detection was counted as false-positive when
the annotator judged the posture of the animal (head direction) not inside the head
direction window at the exact time of detection. Note that the accuracy of the pose
estimation network is a major source of false detection, however, inaccurate event
definitions can also lead to unintended stimulation events. Additional training of
the network can increase the accuracy of the triggered stimulation.

Reward delivery and acoustic stimulation. The liquid reward was delivered via a
custom-built reward delivery system using a peristaltic pump (Takasago Electric, Inc.).
A nozzle connected to the pump was placed in the center of the northern arena wall
(where the screen was located). The animal was briefly habituated to the reward
during handling before continuing with habituation to the delivery system. For this,
mice were first habituated to the arena and then received pretraining for reward
consumption for 3 days, where they were presented with a reward at random time
points. The liquid reward consisted of diluted sweetened condensed milk (1:10 with
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Aqua dest.) and was delivered in a volume of ca. 4–6 µl. If not collected, the reward
was withdrawn again. The aversive tone (ca. 100 dB) was delivered via a custom build
piezo alarm tone generator. The device was placed above the arena.

Pose estimation using DLC. In all experiments, we used 3-point tracking to
estimate the position, direction, and angle of the animal using the head, neck, and
tail root as body parts of interest. Networks were trained using the DLC 1.11
framework. First, 300 images of relevant behavior in the corresponding arena were
annotated and 95% were used for DLC network training sets. Note that for some
cases, a small number of test images (5%, 15) might require further evaluation of
the trained network to guarantee sufficient accuracy and generalization. Second, we
used a ResNet50-based neural network33,34 with default parameters for 500k
number of training iterations and evaluated network performance. For each
experiment type, a different network was trained using the same approach.

For benchmarking DLStream’s upper-performance limits, we used 300 labeled
images with relevant behavior (95% training set) labeling either 9 or 13 body parts.
The same training set was used to train several neural networks based on different
architectures or depths (ResNet50, ResNet10133,34, MobileNetv235) available
through the DLC 2 framework with default parameters for 500k number of training
iterations. After training, the networks were benchmarked within DLStream using
a DLStream function (python deeplabstream.py --dlc-enabled --benchmark-
enabled) with 3000 consecutive frames. Data were collected and average framerate,
as well as standard deviation, was calculated for 4 different image resolutions (1280
× 1024, 640 × 512, 416 × 341, 320 × 256) available to the Basler acA1300-200um
camera (Basler AG, Germany), which acquired frames at a rate of 172 Hz.

Posture detection in DLStream. We extracted the raw score maps from the deep
neural network analysis and used them for posture detection. First, body part esti-
mation, similar to the DLC approach, was conducted by local maxima detection using
custom image analysis scripts. The resulting pose estimation was then transferred into
postures. For this, each possible combination of body parts was investigated and
filtered using a closest distance approach. DLStream detects estimated postures and
compares them to relevant trigger modules for closed-loop control of experiments. To
evaluate our own DLC trained networks, we measured the pose estimation error and
compared it to a human-labeled data set (labeled by a single human annotator). For
this, we extracted a new image set from our optogenetic experiment sessions (n=
597) and measured the average difference (Euclidean distance) between human
annotation and pose estimation in position, as well as resulting head direction angle.
Additionally, we calculated the false-positive/false-negative rate of hypothetical head
direction triggers with differently sized angle windows (60, 50, 40, 30, 20, 10). To
counter any non-uniform distribution of head direction angles, we averaged the rates
for multiple ranges per bin (e.g., 0–60°, 60–120°, 120–180°) and calculated the
standard deviation. See Supplementary Fig. 3 for details.

DLStream output and adaptability. DLStream is storing posture detection and
information from experiments in a table-based file (see also Supplementary Data 3)
that can be opened by any standard system. The file is indexed by the frame ID
from the camera stream and provides information on the estimated position of all
tracked body parts, the status of the experiment (whether it is active or not), and a
“trial” column which is used to give event/trial-specific information during
experiments (e.g., negative or positive trial during conditioning or stimulation
active/not active during optogenetic experiments). The table also includes a “time”
column where experimenters can see the exact inference time between each frame
and the actual time that passed during the experiment.

DLStream experiments are not limited to the body parts used in our
experiments and can utilize any combination of pose estimated body parts.
DLStream’s posture detection is stored as a “skeleton” (a set of named body parts)
which is directly taken from the DLC network. Each body part or a set of body
parts can be selected for the design of user-defined experiments.

DLStream users are not limited to the triggers and experiments used for the
experiments in this paper but can either use provided modules or design their own
modules with the help of our in-depth tutorials (https://github.com/
SchwarzNeuroconLab/DeepLabStream). Currently available triggers include speed
(Supplementary Movie 1), head direction, and ROI-based detection.

For a further step-by-step explanation, we included a guide on our
GitHub page.

Statistics and reproducibility. Paired t-tests were used for statistical comparisons
of data. All data presented in the text are shown as the mean ± standard deviation.
Uncorrected alpha (desired significance level) was set to 0.05 (* <0.05, ** <0.01,
*** <0.001). Sample sizes and numbers are indicated in detail in each figure
caption and main text. Exclusion criteria, if applied, are specified in each corre-
sponding method section.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
DLStream56 is available to the scientific community under https://github.com/
SchwarzNeuroconLab/DeepLabStream. Tutorials and further information on how to use
and adapt DLStream is available under the same address.
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